O'REILLY"

Sclence

IMPORT, TIDY, TRANSFORM, VISUALIZE, AND MODEL DATA

Hadley Wickham &
Garrett Grolemund

vww allitebooks.conl



http://www.allitebooks.org

O'REILLY"

R for Data Science

Learn how to use R to turn raw data into insight,
knowledge, and understanding. This book introduces
you to R, RStudio, and the tidyverse, a collection of
R packages designed to work together to make data
science fast, fluent, and fun. Suitable for readers with
no previous programming experience, R for Data
Science is designed to get you doing data science as
quickly as possible.

Authors Hadley Wickham and Garrett Grolemund
guide you through the steps of importing,
wrangling, exploring, and modeling your data and
communicating the results. You'll get a complete, big-
picture understanding of the data science cycle, along
with basic tools you need to manage the details.

You'll learn how to:

m Wrangle—transform your datasets into a
form convenient for analysis

m Program—learn powerful R tools for
solving data problems with greater clarity
and ease

m Explore—examine your data, generate
hypotheses, and quickly test them

m Model—provide a low-dimensional
summary that captures true “signals” in
your dataset

m Communicate—learn R Markdown for
integrating prose, code, and results

“Hadley Wickham is
alegend in the data
science field for having
invented a completely
new way of doing data
analysis that no one had
thought of before. This
new book with Garrett
Grolemund codifies this
novel approach and
will serve as the Bible
for a generation of data
analysts.”

—RogerD.Peng
Professor of Biostatistics,
Johns Hopkins Bloomberg
School of Public Health

Hadley Wickham is Chief
Scientist at RStudio and a
member of the R Foundation. He
builds tools (both computational
and cognitive) that make data
science easier, faster, and more
fun. Learn more on his website,
http://hadley.nz.

Garrett Grolemund is a
statistician, teacher, and Master
Instructor at RStudio. He is the
author of Hands-On Programming
with R (O'Reilly). Many of Garrett's
instructional videos are available
on oreilly.com/safari.

DATA ANALYSIS/STATISTICAL SOFTWARE

US $39.99 CAN $45.99
ISBN: 978-1-491-91039-9

WIRTIRIAANT i
i =

7814911910399

Twitter: @oreillymedia
facebook.com/oreilly

vww allitebooks.conl



http://www.allitebooks.org

R for Data Science

Import, Tidy, Transform, Visualize,
and Model Data

Hadley Wickham and Garrett Grolemund

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

[vww allitebooks.cond



http://www.allitebooks.org

R for Data Science
by Hadley Wickham and Garrett Grolemund

Copyright © 2017 Garrett Grolemund, Hadley Wickham. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Marie Beaugureau and Indexer: Wendy Catalano

Mike Loukides Interior Designer: David Futato
Production Editor: Nicholas Adams Cover Designer: Karen Montgomery
Copyeditor: Kim Cofer lllustrator: Rebecca Demarest

Proofreader: Charles Roumeliotis
December 2016: First Edition

Revision History for the First Edition
2016-12-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491910399 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. R for Data Sci-
ence, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub-
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

978-1-491-91039-9
(T1]

vww allitebooks.conl



http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491910399
http://www.allitebooks.org

Table of Contents

o] [« iX

Partl. Explore

1. Data Visualization withggplot2..................ccoiiiinaat 3
Introduction 3
First Steps 4
Aesthetic Mappings 7
Common Problems 13
Facets 14
Geometric Objects 16
Statistical Transformations 22
Position Adjustments 27
Coordinate Systems 31
The Layered Grammar of Graphics 34

2. Workflow: Basics. ..........ovvvvvuiiiiiiiiiiiiiiiiiiiin, 37
Coding Basics 37
What's in a Name? 38
Calling Functions 39

3. Data Transformation withdplyr..............coovvviiiinnnt. 43
Introduction 43
Filter Rows with filter() 45
Arrange Rows with arrange() 50
Select Columns with select() 51

vww allitebooks.conl



http://www.allitebooks.org

Add New Variables with mutate() 54

Grouped Summaries with summarize() 59
Grouped Mutates (and Filters) 73
4, Workflow: SCripts. . ..ooveereeiiie i iiieiieeeieeennaes 77
Running Code 78
RStudio Diagnostics 79
5. Exploratory Data Analysis............covvvveniiinneennnnnn. 81
Introduction 81
Questions 82
Variation 83
Missing Values 91
Covariation 93
Patterns and Models 105
ggplot2 Calls 108
Learning More 108
6. Workflow: Projects. .......ooovveiiieiiiiieninenieennnnnns M
What Is Real? 111
Where Does Your Analysis Live? 113
Paths and Directories 113
RStudio Projects 114
Summary 116

Partll. Wrangle

7. Tibbleswithtibble.............coovviiiiiiiiiiiiiiii, 119
Introduction 119
Creating Tibbles 119
Tibbles Versus data.frame 121
Interacting with Older Code 123

8. Datalmportwithreadr...............cooviiiiiiiiiinnen.. 125
Introduction 125
Getting Started 125
Parsing a Vector 129
Parsing a File 137
Writing to a File 143
Other Types of Data 145

iv | Table of Contents

vww allitebooks.conl



http://www.allitebooks.org

9. TidyDatawithtidyr.............cooivviiiiiiiiiiiniiiae. 147
Introduction 147
Tidy Data 148
Spreading and Gathering 151
Separating and Pull 157
Missing Values 161
Case Study 163
Nontidy Data 168

10. Relational Datawithdplyr................oooiiiiiiiiit, m
Introduction 171
nycflights13 172
Keys 175
Mutating Joins 178
Filtering Joins 188
Join Problems 191
Set Operations 192

11, Stringswithstringr.........oooiiiiiiiiiiiiiiiiiiiiiinen, 195
Introduction 195
String Basics 195
Matching Patterns with Regular Expressions 200
Tools 207
Other Types of Pattern 218
Other Uses of Regular Expressions 221
stringi 222

12. Factorswithforcats..................coooiiiiiiiil, 223
Introduction 223
Creating Factors 224
General Social Survey 225
Modifying Factor Order 227
Moditying Factor Levels 232

13. Dates and Times with lubridate............................ 237
Introduction 237
Creating Date/Times 238
Date-Time Components 243
Time Spans 249
Time Zones 254

Table of Contents | v

vww allitebooks.conl



http://www.allitebooks.org

Partlll. Program

14. Pipeswithmagrittr.........coovviiiiiiiiiiiriiiiennnennn, 261
Introduction 261
Piping Alternatives 261
When Not to Use the Pipe 266
Other Tools from magrittr 266

15. Functions........oooviiiiiiiii 269
Introduction 269
When Should You Write a Function? 270
Functions Are for Humans and Computers 273
Conditional Execution 276
Function Arguments 280
Return Values 285
Environment 288

L T T ] 291
Introduction 291
Vector Basics 292
Important Types of Atomic Vector 293
Using Atomic Vectors 296
Recursive Vectors (Lists) 302
Attributes 307
Augmented Vectors 309

17. Iterationwithpurrr.......oooviiiiiiiiii i 313
Introduction 313
For Loops 314
For Loop Variations 317
For Loops Versus Functionals 322
The Map Functions 325
Dealing with Failure 329
Mapping over Multiple Arguments 332
Walk 335
Other Patterns of For Loops 336

vi | Tableof Contents

vww allitebooks.conl



http://www.allitebooks.org

PartlV. Model

18. Model Basics withmodelr..................oooiiii.l, 345
Introduction 345
A Simple Model 346
Visualizing Models 354
Formulas and Model Families 358
Missing Values 371
Other Model Families 372
19. ModelBuilding..........oovvviiiiiiiiiiiiiiiiienninnnnss 375
Introduction 375
Why Are Low-Quality Diamonds More Expensive? 376
What Affects the Number of Daily Flights? 384
Learning More About Models 396
20. Many Models with purrrandbroom......................... 397
Introduction 397
gapminder 398
List-Columns 409
Creating List-Columns 411
Simplifying List-Columns 416
Making Tidy Data with broom 419

PartV. Communicate

21. RMarkdown. .......coviiniiiiiiiiiiiiii i iieieeniennas 423
Introduction 423

R Markdown Basics 424
Text Formatting with Markdown 427
Code Chunks 428
Troubleshooting 435
YAML Header 435
Learning More 438

22. Graphics for Communication with ggplot2.................... M
Introduction 441
Label 442
Annotations 445
Table of Contents | vii

vww allitebooks.conl



http://www.allitebooks.org

Scales 451

Zooming 461
Themes 462
Saving Your Plots 464
Learning More 467
23. RMarkdownFormats............covviiiiiiinininnennennne 469
Introduction 469
Output Options 470
Documents 470
Notebooks 471
Presentations 472
Dashboards 473
Interactivity 474
Websites 477
Other Formats 477
Learning More 478
24. RMarkdownWorkflow..........ccovviiiiiiiiiiiiinennn... 479
T 1 483
vii | Table of Contents

vww allitebooks.conl



http://www.allitebooks.org

Preface

Data science is an exciting discipline that allows you to turn raw
data into understanding, insight, and knowledge. The goal of R for
Data Science is to help you learn the most important tools in R that
will allow you to do data science. After reading this book, you'll have
the tools to tackle a wide variety of data science challenges, using the
best parts of R.

What You Will Learn

Data science is a huge field, and there’s no way you can master it by
reading a single book. The goal of this book is to give you a solid
foundation in the most important tools. Our model of the tools
needed in a typical data science project looks something like this:

Visualize

Import — Tidy — Transform ) — Communicate

Understand

Program

First you must import your data into R. This typically means that
you take data stored in a file, database, or web API, and load it into a
data frame in R. If you can’t get your data into R, you can’t do data
science on it!




Once you've imported your data, it is a good idea to tidy it. Tidying
your data means storing it in a consistent form that matches the
semantics of the dataset with the way it is stored. In brief, when your
data is tidy, each column is a variable, and each row is an observa-
tion. Tidy data is important because the consistent structure lets you
focus your struggle on questions about the data, not fighting to get
the data into the right form for different functions.

Once you have tidy data, a common first step is to transform it.
Transformation includes narrowing in on observations of interest
(like all people in one city, or all data from the last year), creating
new variables that are functions of existing variables (like comput-
ing velocity from speed and time), and calculating a set of summary
statistics (like counts or means). Together, tidying and transforming
are called wrangling, because getting your data in a form that’s natu-
ral to work with often feels like a fight!

Once you have tidy data with the variables you need, there are two
main engines of knowledge generation: visualization and modeling.
These have complementary strengths and weaknesses so any real
analysis will iterate between them many times.

Visualization is a fundamentally human activity. A good visualiza-
tion will show you things that you did not expect, or raise new ques-
tions about the data. A good visualization might also hint that you're
asking the wrong question, or you need to collect different data. Vis-
ualizations can surprise you, but don’t scale particularly well because
they require a human to interpret them.

Models are complementary tools to visualization. Once you have
made your questions sufficiently precise, you can use a model to
answer them. Models are a fundamentally mathematical or compu-
tational tool, so they generally scale well. Even when they don't, it’s
usually cheaper to buy more computers than it is to buy more
brains! But every model makes assumptions, and by its very nature a
model cannot question its own assumptions. That means a model
cannot fundamentally surprise you.

The last step of data science is communication, an absolutely critical
part of any data analysis project. It doesn’t matter how well your
models and visualization have led you to understand the data unless
you can also communicate your results to others.

X | Preface



Surrounding all these tools is programming. Programming is a cross-
cutting tool that you use in every part of the project. You don’t need
to be an expert programmer to be a data scientist, but learning more
about programming pays off because becoming a better program-
mer allows you to automate common tasks, and solve new problems
with greater ease.

You'll use these tools in every data science project, but for most
projects they’re not enough. There’s a rough 80-20 rule at play; you
can tackle about 80% of every project using the tools that you'll
learn in this book, but you’ll need other tools to tackle the remain-
ing 20%. Throughout this book we’ll point you to resources where
you can learn more.

How This Book Is Organized

The previous description of the tools of data science is organized
roughly according to the order in which you use them in an analysis
(although of course you’ll iterate through them multiple times). In
our experience, however, this is not the best way to learn them:

« Starting with data ingest and tidying is suboptimal because 80%
of the time its routine and boring, and the other 20% of the
time it’s weird and frustrating. That’s a bad place to start learn-
ing a new subject! Instead, we'll start with visualization and
transformation of data that’s already been imported and tidied.
That way, when you ingest and tidy your own data, your moti-
vation will stay high because you know the pain is worth it.

« Some topics are best explained with other tools. For example,
we believe that it’s easier to understand how models work if you
already know about visualization, tidy data, and programming.

» Programming tools are not necessarily interesting in their own
right, but do allow you to tackle considerably more challenging
problems. We'll give you a selection of programming tools in
the middle of the book, and then you’ll see they can combine
with the data science tools to tackle interesting modeling prob-
lems.

Within each chapter, we try to stick to a similar pattern: start with
some motivating examples so you can see the bigger picture, and
then dive into the details. Each section of the book is paired with
exercises to help you practice what you've learned. While it’s tempt-

Preface | xi



ing to skip the exercises, there’s no better way to learn than practic-
ing on real problems.

What You Won't Learn

There are some important topics that this book doesn't cover. We
believe it’s important to stay ruthlessly focused on the essentials so
you can get up and running as quickly as possible. That means this
book can't cover every important topic.

Big Data

This book proudly focuses on small, in-memory datasets. This is the
right place to start because you can’t tackle big data unless you have
experience with small data. The tools you learn in this book will
easily handle hundreds of megabytes of data, and with a little care
you can typically use them to work with 1-2 Gb of data. If you're
routinely working with larger data (10-100 Gb, say), you should
learn more about data.table. This book doesnt teach data.table
because it has a very concise interface, which makes it harder to
learn since it offers fewer linguistic cues. But if youre working with
large data, the performance payoff is worth the extra effort required
to learn it.

If your data is bigger than this, carefully consider if your big data
problem might actually be a small data problem in disguise. While
the complete data might be big, often the data needed to answer a
specific question is small. You might be able to find a subset, sub-
sample, or summary that fits in memory and still allows you to
answer the question that you're interested in. The challenge here is
finding the right small data, which often requires a lot of iteration.

Another possibility is that your big data problem is actually a large
number of small data problems. Each individual problem might fit
in memory, but you have millions of them. For example, you might
want to fit a model to each person in your dataset. That would be
trivial if you had just 10 or 100 people, but instead you have a mil-
lion. Fortunately each problem is independent of the others (a setup
that is sometimes called embarrassingly parallel), so you just need a
system (like Hadoop or Spark) that allows you to send different
datasets to different computers for processing. Once you've figured
out how to answer the question for a single subset using the tools

xii | Preface


http://bit.ly/Rdatatable

described in this book, you learn new tools like sparklyr, rhipe, and
ddr to solve it for the full dataset.

Python, Julia, and Friends

In this book, you won't learn anything about Python, Julia, or any
other programming language useful for data science. This isn't
because we think these tools are bad. They’re not! And in practice,
most data science teams use a mix of languages, often at least R and
Python.

However, we strongly believe that it’s best to master one tool at a
time. You will get better faster if you dive deep, rather than spread-
ing yourself thinly over many topics. This doesn’t mean you should
only know one thing, just that you’ll generally learn faster if you
stick to one thing at a time. You should strive to learn new things
throughout your career, but make sure your understanding is solid
before you move on to the next interesting thing.

We think R is a great place to start your data science journey because
it is an environment designed from the ground up to support data
science. R is not just a programming language, but it is also an inter-
active environment for doing data science. To support interaction, R
is a much more flexible language than many of its peers. This flexi-
bility comes with its downsides, but the big upside is how easy it is
to evolve tailored grammars for specific parts of the data science
process. These mini languages help you think about problems as a
data scientist, while supporting fluent interaction between your
brain and the computer.

Nonrectangular Data

This book focuses exclusively on rectangular data: collections of val-
ues that are each associated with a variable and an observation.
There are lots of datasets that do not naturally fit in this paradigm:
including images, sounds, trees, and text. But rectangular data
frames are extremely common in science and industry, and we
believe that they’re a great place to start your data science journey.

Hypothesis Confirmation

It's possible to divide data analysis into two camps: hypothesis gen-
eration and hypothesis confirmation (sometimes called confirma-

Preface | xiii



tory analysis). The focus of this book is unabashedly on hypothesis
generation, or data exploration. Here you’'ll look deeply at the data
and, in combination with your subject knowledge, generate many
interesting hypotheses to help explain why the data behaves the way
it does. You evaluate the hypotheses informally, using your skepti-
cism to challenge the data in multiple ways.

The complement of hypothesis generation is hypothesis confirma-
tion. Hypothesis confirmation is hard for two reasons:

 You need a precise mathematical model in order to generate fal-
sifiable predictions. This often requires considerable statistical
sophistication.

+ You can only use an observation once to confirm a hypothesis.
As soon as you use it more than once youre back to doing
exploratory analysis. This means to do hypothesis confirmation
you need to “preregister” (write out in advance) your analysis
plan, and not deviate from it even when you have seen the data.
We'll talk a little about some strategies you can use to make this
easier in Part IV.

It's common to think about modeling as a tool for hypothesis confir-
mation, and visualization as a tool for hypothesis generation. But
that’s a false dichotomy: models are often used for exploration, and
with a little care you can use visualization for confirmation. The key
difference is how often you look at each observation: if you look
only once, it’s confirmation; if you look more than once, it’s explora-
tion.

Prerequisites

We've made a few assumptions about what you already know in
order to get the most out of this book. You should be generally
numerically literate, and it’s helpful if you have some programming
experience already. If you've never programmed before, you might
find Hands-On Programming with R by Garrett to be a useful
adjunct to this book.

There are four things you need to run the code in this book: R,
RStudio, a collection of R packages called the tidyverse, and a hand-
ful of other packages. Packages are the fundamental units of repro-

xiv | Preface


http://shop.oreilly.com/product/0636920028574.do

ducible R code. They include reusable functions, the documentation
that describes how to use them, and sample data.

R

To download R, go to CRAN, the comprehensive R archive network.
CRAN is composed of a set of mirror servers distributed around the
world and is used to distribute R and R packages. Don't try and pick
a mirror that’s close to you: instead use the cloud mirror, https://
cloud.r-project.org, which automatically figures it out for you.

A new major version of R comes out once a year, and there are 2-3
minor releases each year. It's a good idea to update regularly.
Upgrading can be a bit of a hassle, especially for major versions,
which require you to reinstall all your packages, but putting it off
only makes it worse.

RStudio

RStudio is an integrated development environment, or IDE, for R
programming. Download and install it from http://www.rstu
dio.com/download. RStudio is updated a couple of times a year.
When a new version is available, RStudio will let you know. It’s a
good idea to upgrade regularly so you can take advantage of the lat-
est and greatest features. For this book, make sure you have RStudio
1.0.0.

When you start RStudio, you’ll see two key regions in the interface:

ece ~[Documents|rdds/data-analysis - RStudio
-l - Addins -

s(x = displ, y = huy) +
lour = class))

Console Output

Preface | xv


https://cloud.r-project.org
https://cloud.r-project.org
http://www.rstudio.com/download
http://www.rstudio.com/download

For now, all you need to know is that you type R code in the console
pane, and press Enter to run it. You'll learn more as we go along!

The Tidyverse

You'll also need to install some R packages. An R package is a collec-
tion of functions, data, and documentation that extends the capabili-
ties of base R. Using packages is key to the successful use of R. The
majority of the packages that you will learn in this book are part of
the so-called tidyverse. The packages in the tidyverse share a com-
mon philosophy of data and R programming, and are designed to
work together naturally.

You can install the complete tidyverse with a single line of code:
install.packages("tidyverse")

On your own computer, type that line of code in the console, and
then press Enter to run it. R will download the packages from
CRAN and install them onto your computer. If you have problems
installing, make sure that you are connected to the internet, and that
https://cloud.r-project.org/ isn't blocked by your firewall or proxy.

You will not be able to use the functions, objects, and help files in a
package until you load it with library(). Once you have installed a
package, you can load it with the 1ibrary() function:

library(tidyverse)

#> Loading tidyverse: ggplot2

#> Loading tidyverse: tibble

#> Loading tidyverse: tidyr

#> Loading tidyverse: readr

#> Loading tidyverse: purrr

#> Loading tidyverse: dplyr

#> Conflicts with tidy packages ---------=-=--=-=--~=-““~---~-~-~-~---
#> filter(): dplyr, stats

#> lag(): dplyr, stats

This tells you that tidyverse is loading the ggplot2, tibble, tidyr,
readr, purrr, and dplyr packages. These are considered to be the

core of the tidyverse because you'll use them in almost every analy-
sis.

Packages in the tidyverse change fairly frequently. You can see if
updates are available, and optionally install them, by running tidy
verse_update().

xvi | Preface


https://cloud.r-project.org/

Other Packages

There are many other excellent packages that are not part of the
tidyverse, because they solve problems in a different domain, or are
designed with a different set of underlying principles. This doesn't
make them better or worse, just different. In other words, the com-
plement to the tidyverse is not the messyverse, but many other uni-
verses of interrelated packages. As you tackle more data science
projects with R, you'll learn new packages and new ways of thinking
about data.

In this book we'll use three data packages from outside the tidyverse:
install.packages(c("nycflights13", "gapminder", "Lahman"))

These packages provide data on airline flights, world development,
and baseball that we'll use to illustrate key data science ideas.

Running R Code

The previous section showed you a couple of examples of running R
code. Code in the book looks like this:

1+2
#> [1] 3

If you run the same code in your local console, it will look like this:
>1+ 2
[1] 3
There are two main differences. In your console, you type after the
>, called the prompt; we don't show the prompt in the book. In the
book, output is commented out with #>; in your console it appears
directly after your code. These two differences mean that if you're

working with an electronic version of the book, you can easily copy
code out of the book and into the console.

Throughout the book we use a consistent set of conventions to refer
to code:

« Functions are in a code font and followed by parentheses, like
sum() or mean().

o Other R objects (like data or function arguments) are in a code
font, without parentheses, like flights or x.

Preface | xvii



o If we want to make it clear what package an object comes from,
we'll use the package name followed by two colons, like
dplyr::mutate() or nycflights13::flights. This is also valid
R code.

Getting Help and Learning More

This book is not an island; there is no single resource that will allow
you to master R. As you start to apply the techniques described in
this book to your own data you will soon find questions that I do
not answer. This section describes a few tips on how to get help, and
to help you keep learning.

If you get stuck, start with Google. Typically, adding “R” to a query
is enough to restrict it to relevant results: if the search isn’t useful, it
often means that there aren’t any R-specific results available. Google
is particularly useful for error messages. If you get an error message
and you have no idea what it means, try googling it! Chances are
that someone else has been confused by it in the past, and there will
be help somewhere on the web. (If the error message isn’t in English,
run Sys.setenv(LANGUAGE = "en") and re-run the code; youre
more likely to find help for English error messages.)

If Google doesn’t help, try stackoverflow. Start by spending a little
time searching for an existing answer; including [R] restricts your
search to questions and answers that use R. If you don't find any-
thing useful, prepare a minimal reproducible example or reprex. A
good reprex makes it easier for other people to help you, and often
you’ll figure out the problem yourself in the course of making it.

There are three things you need to include to make your example
reproducible: required packages, data, and code:

o Packages should be loaded at the top of the script, so it’s easy to
see which ones the example needs. This is a good time to check
that youre using the latest version of each package; it’s possible
you've discovered a bug that’s been fixed since you installed the
package. For packages in the tidyverse, the easiest way to check
is to run tidyverse_update().

o The easiest way to include data in a question is to use dput() to
generate the R code to re-create it. For example, to re-create the
mtcars dataset in R, I'd perform the following steps:

xviii | Preface


http://stackoverflow.com

1. Run dput(mtcars) in R.
2. Copy the output.

3. In my reproducible script, type mtcars <- then paste.

Try and find the smallest subset of your data that still reveals the
problem.

« Spend a little bit of time ensuring that your code is easy for oth-
ers to read:

— Make sure you've used spaces and your variable names are
concise, yet informative.

— Use comments to indicate where your problem lies.

— Do your best to remove everything that is not related to the
problem.

The shorter your code is, the easier it is to understand, and the
easier it is to fix.

Finish by checking that you have actually made a reproducible
example by starting a fresh R session and copying and pasting your
script in.

You should also spend some time preparing yourself to solve prob-
lems before they occur. Investing a little time in learning R each day
will pay off handsomely in the long run. One way is to follow what
Hadley, Garrett, and everyone else at RStudio are doing on the RStu-
dio blog. This is where we post announcements about new packages,
new IDE features, and in-person courses. You might also want to
follow Hadley (@hadleywickham) or Garrett (@statgarrett) on Twit-
ter, or follow @rstudiotips to keep up with new features in the IDE.

To keep up with the R community more broadly, we recommend
reading http://www.r-bloggers.com: it aggregates over 500 blogs
about R from around the world. If youre an active Twitter user, fol-
low the #rstats hashtag. Twitter is one of the key tools that Hadley
uses to keep up with new developments in the community.

Acknowledgments

This book isn’t just the product of Hadley and Garrett, but is the
result of many conversations (in person and online) that we’ve had
with the many people in the R community. There are a few people

Preface | xix


https://blog.rstudio.org
https://blog.rstudio.org
https://twitter.com/hadleywickham
https://twitter.com/statgarrett
https://twitter.com/rstudiotips
http://www.r-bloggers.com:

wed like to thank in particular, because they have spent many hours
answering our dumb questions and helping us to better think about
data science:

o Jenny Bryan and Lionel Henry for many helpful discussions
around working with lists and list-columns.

o The three chapters on workflow were adapted (with permission)
from “R basics, workspace and working directory, RStudio
projects” by Jenny Bryan.

o Genevera Allen for discussions about models, modeling, the
statistical learning perspective, and the difference between
hypothesis generation and hypothesis confirmation.

« Yihui Xie for his work on the bookdown package, and for tire-
lessly responding to my feature requests.

« Bill Behrman for his thoughtful reading of the entire book, and
for trying it out with his data science class at Stanford.

o The #rstats twitter community who reviewed all of the draft
chapters and provided tons of useful feedback.

o Tal Galili for augmenting his dendextend package to support a
section on clustering that did not make it into the final draft.

This book was written in the open, and many people contributed
pull requests to fix minor problems. Special thanks goes to everyone
who contributed via GitHub (listed in alphabetical order): adi prad-
han, Ahmed ElGabbas, Ajay Deonarine, @Alex, Andrew Landgraf,
@batpigandme, @behrman, Ben Marwick, Bill Behrman, Brandon
Greenwell, Brett Klamer, Christian G. Warden, Christian Mongeau,
Colin Gillespie, Cooper Morris, Curtis Alexander, Daniel Gromer,
David Clark, Derwin McGeary, Devin Pastoor, Dylan Cashman, Earl
Brown, Eric Watt, Etienne B. Racine, Flemming Villalona, Gregory
Jefferis, @harrismcgehee, Hengni Cai, Ian Lyttle, Ian Sealy, Jakub
Nowosad, Jennifer (Jenny) Bryan, @jennybc, Jeroen Janssens, Jim
Hester, @jjchern, Joanne Jang, John Sears, Jon Calder, Jonathan
Page, @jonathanflint, Julia Stewart Lowndes, Julian During, Justinas
Petuchovas, Kara Woo, @kdpsingh, Kenny Darrell, Kirill Sevastya-
nenko, @koalabearski, @KyleHumphrey, Lawrence Wu, Matthew
Sedaghatfar, Mine Cetinkaya-Rundel, @MJMarshall, Mustafa Ascha,
@nate-d-olson, Nelson Areal, Nick Clark, @nickelas, @nwaff,
@OaCantona, Patrick Kennedy, Peter Hurford, Rademeyer Ver-
maak, Radu Grosu, @rlzijdeman, Robert Schuessler, @robinlovelace,

xx | Preface


http://bit.ly/Rbasicsworkflow
http://bit.ly/Rbasicsworkflow
https://github.com/rstudio/bookdown

@robinsones, S’busiso Mkhondwane, @seamus-mckinsey, @seanp-
williams, Shannon Ellis, @shoili, @sibusiso16, @spirgel, Steve Mor-
timer, @svenski, Terence Teo, Thomas Klebel, T] Mahr, Tom Prior,
Will Beasley, Yihui Xie.

Online Version

An online version of this book is available at http://rd4ds.had.co.nz. It
will continue to evolve in between reprints of the physical book. The
source of the book is available at https://github.com/hadley/r4ds. The
book is powered by https://bookdown.org, which makes it easy to
turn R markdown files into HTML, PDFE, and EPUB.

This book was built with:

devtools: :session_info(c("tidyverse"))

#> SesSion TNfO === - m - m oo
#> setting value

#> version R version 3.3.1 (2016-06-21)

#> system x86_64, darwinl3.4.0

#> ui X11

#> language (EN)

#> collate en_US.UTF-8

# tz America/Los_Angeles

#> date 2016-10-10

#> PACKAGES - - - - === - s oo

#> package * version date source

#> assertthat 0.1 2013-12-06 CRAN (R 3.3.0)
#> BH 1.60.0-2 2016-05-07 CRAN (R 3.3.0)
#> broom 0.4.1 2016-06-24 CRAN (R 3.3.0)
#> colorspace 1.2-6 2015-03-11 CRAN (R 3.3.0)
#> curl 2.1 2016-09-22 CRAN (R 3.3.0)
#> DBI 0.5-1 2016-09-10 CRAN (R 3.3.0)
#> dichromat 2.0-0 2013-01-24 CRAN (R 3.3.0)
#> digest 0.6.10 2016-08-02 CRAN (R 3.3.0)
# dplyr * 0.5.0 2016-06-24 CRAN (R 3.3.0)
#> forcats 0.1.1 2016-09-16 CRAN (R 3.3.0)
#> foreign 0.8-67 2016-09-13 CRAN (R 3.3.0)
#> ggplot2 * 2.1.0.9001 2016-10-06 local

#> gtable 0.2.0 2016-02-26 CRAN (R 3.3.0)
#> haven 1.0.0 2016-09-30 local

#>  hnms 0.2-1 2016-07-28 CRAN (R 3.3.1)
#  httr 1.2.1 2016-07-03 cran (@1.2.1)
#> jsonlite 1.1 2016-09-14 CRAN (R 3.3.0)
#> labeling 0.3 2014-08-23 CRAN (R 3.3.0)
#> lattice 0.20-34 2016-09-06 CRAN (R 3.3.0)
#> lazyeval 0.2.0 2016-06-12 CRAN (R 3.3.0)
#> lubridate 1.6.0 2016-09-13 CRAN (R 3.3.0)
#> magrittr 1.5 2014-11-22 CRAN (R 3.3.0)

Preface | xxi


http://r4ds.had.co.nz
https://github.com/hadley/r4ds
https://bookdown.org

#> MASS 7.3-45 2016-04-21 CRAN (R 3.3.1)
#>  mime 0.5 2016-07-07 cran (@0.5)

#> mnormt 1.5-4 2016-03-09 CRAN (R 3.3.0)
#> modelr 0.1.0 2016-08-31 CRAN (R 3.3.0)
#> munsell 0.4.3 2016-02-13 CRAN (R 3.3.0)
#> nlme 3.1-128 2016-05-10 CRAN (R 3.3.1)
#> openssl 0.9.4 2016-05-25 cran (@9.9.4)
#> plyr 1.8.4 2016-06-08 cran (@1.8.4)
#> psych 1.6.9 2016-09-17 CRAN (R 3.3.0)
#> purrr *0.2.2 2016-06-18 CRAN (R 3.3.0)
#> R6 2.1.3 2016-08-19 CRAN (R 3.3.0)
#> RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.3.0)
#> Rcpp 0.12.7 2016-09-05 CRAN (R 3.3.0)
#> readr *1.0.0 2016-08-03 CRAN (R 3.3.0)
#> readxl 0.1.1 2016-03-28 CRAN (R 3.3.0)
#> reshape? 1.4.1 2014-12-06 CRAN (R 3.3.0)
#> rvest 0.3.2 2016-06-17 CRAN (R 3.3.0)
#> scales 0.4.0.9003 2016-10-06 local

#> selectr 0.3-0 2016-08-30 CRAN (R 3.3.0)
#> stringi 1.1.2 2016-10-01 CRAN (R 3.3.1)
#> stringr 1.1.0 2016-08-19 cran (@1.1.0)
#> tibble 1.2 2016-08-26 CRAN (R 3.3.0)
#>  tidyr 0.6.0 2016-08-12 CRAN (R 3.3.0)
#> tidyverse *1.0.0 2016-09-09 CRAN (R 3.3.0)
#>  xml2 1.0.0.9001 2016-09-30 local

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Bold
Indicates the names of R packages.

Constant width
Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data-
bases, data types, environment variables, statements, and key-
words.

Constant width bold
Shows commands or other text that should be typed literally by
the user.

xxii | Preface



Constant width italic
Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

Using Code Examples

Source code is available for download at https://github.com/hadley/
r4ds.

This book is here to help you get your job done. In general, if exam-
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless youre reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu-
ally includes the title, author, publisher, and ISBN. For example: “R
for Data Science by Hadley Wickham and Garrett Grolemund
(O’Reilly). Copyright 2017 Garrett Grolemund, Hadley Wickham,
978-1-491-91039-9”

If you feel your use of code examples falls outside fair use or the per-
mission given above, feel free to contact us at permis-
sions@oreilly.com.

0'Reilly Safari

Safari (formerly Safari Books Online) is a

4 membership-based training and reference
platform for enterprise, government, educa-
tors, and individuals.

Preface | xxiii


https://github.com/hadley/r4ds
https://github.com/hadley/r4ds
mailto:permissions@oreilly.com
mailto:permissions@oreilly.com

Members have access to thousands of books, training videos, Learn-
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth-
ers.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/r-for-data-science.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxiv | Preface


http://oreilly.com/safari
http://bit.ly/r-for-data-science
http://bit.ly/r-for-data-science
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART |
Explore

The goal of the first part of this book is to get you up to speed with
the basic tools of data exploration as quickly as possible. Data explo-
ration is the art of looking at your data, rapidly generating hypothe-
ses, quickly testing them, then repeating again and again and again.
The goal of data exploration is to generate many promising leads
that you can later explore in more depth.

Visualize

-

Import — Tidy — Transform ) — Communicate

k_, Model

Explore

Program

In this part of the book you will learn some useful tools that have an
immediate payoff:

o Visualization is a great place to start with R programming,
because the payoff is so clear: you get to make elegant and infor-
mative plots that help you understand data. In Chapter 1 you'll



dive into visualization, learning the basic structure of a ggplot2
plot, and powerful techniques for turning data into plots.

o Visualization alone is typically not enough, so in Chapter 3
you'll learn the key verbs that allow you to select important vari-
ables, filter out key observations, create new variables, and com-
pute summaries.

o Finally, in Chapter 5, you'll combine visualization and transfor-
mation with your curiosity and skepticism to ask and answer
interesting questions about data.

Modeling is an important part of the exploratory process, but you
don’t have the skills to effectively learn or apply it yet. We'll come
back to it in Part IV, once you're better equipped with more data
wrangling and programming tools.

Nestled among these three chapters that teach you the tools of
exploration are three chapters that focus on your R workflow. In
Chapter 2, Chapter 4, and Chapter 6 you'll learn good practices for
writing and organizing your R code. These will set you up for suc-
cess in the long run, as they’ll give you the tools to stay organized
when you tackle real projects.



CHAPTER 1
Data Visualization with ggplot2

Introduction

The simple graph has brought more information to the data analy-
st’s mind than any other device.

—John Tukey

This chapter will teach you how to visualize your data using
ggplot2. R has several systems for making graphs, but ggplot2 is
one of the most elegant and most versatile. ggplot2 implements the
grammar of graphics, a coherent system for describing and building
graphs. With ggplot2, you can do more faster by learning one sys-
tem and applying it in many places.

If youd like to learn more about the theoretical underpinnings of
ggplot2 before you start, I'd recommend reading “A Layered Gram-
mar of Graphics”.

Prerequisites

This chapter focuses on ggplot2, one of the core members of the
tidyverse. To access the datasets, help pages, and functions that we
will use in this chapter, load the tidyverse by running this code:

library(tidyverse)

#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr



http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf

#> Loading tidyverse: dplyr

#> Conflicts with tidy packages ------------------------------~--

#> filter(): dplyr, stats

#> lag(): dplyr, stats
That one line of code loads the core tidyverse, packages that you will
use in almost every data analysis. It also tells you which functions
from the tidyverse conflict with functions in base R (or from other
packages you might have loaded).

If you run this code and get the error message “there is no package
called ‘tidyverse} you'll need to first install it, then run library()
once again:

install.packages("tidyverse")

library(tidyverse)
You only need to install a package once, but you need to reload it
every time you start a new session.

If we need to be explicit about where a function (or dataset) comes
from, we'll use the special form package: : function(). For example,
ggplot2::ggplot() tells you explicitly that were using the
ggplot() function from the ggplot2 package.

First Steps

Let’s use our first graph to answer a question: do cars with big
engines use more fuel than cars with small engines? You probably
already have an answer, but try to make your answer precise. What
does the relationship between engine size and fuel efficiency look
like? Is it positive? Negative? Linear? Nonlinear?

The mpg Data Frame

You can test your answer with the mpg data frame found in ggplot2
(aka ggplot2: :mpg). A data frame is a rectangular collection of vari-
ables (in the columns) and observations (in the rows). mpg contains
observations collected by the US Environment Protection Agency
on 38 models of cars:

mpg

#> # A tibble: 234 x 11

#>  manufacturer model displ year cyl trans drv
#> <chr> <chr> <dbl> <int> <int> <chr> <chr>
#> 1 audi a4 1.8 1999 4 auto(l5) f
#> 2 audi a4 1.8 1999 4 manual(m5) f

4 | Chapter 1: Data Visualization with ggplot2

vww allitebooks.conl



http://www.allitebooks.org

#> 3 audi ad 2.0 2008 4 manual(mé6) f
#> 4 audi a4 2.0 2008 4 auto(av) f
#> 5 audi a4 2.8 1999 6 auto(l5) f
#> 6 audi a4 2.8 1999 6 manual(m5) f
#> # ... with 228 more rows, and 4 more variables:

#> # cty <int>, hwy <int>, fl <chr>, class <chr>

Among the variables in mpg are:

o displ, a car’s engine size, in liters.

o hwy, a car’s fuel efficiency on the highway, in miles per gallon
(mpg). A car with a low fuel efficiency consumes more fuel than
a car with a high fuel efficiency when they travel the same dis-
tance.

To learn more about mpg, open its help page by running ?mpg.

Creating a ggplot

To plot mpg, run this code to put displ on the x-axis and hwy on the
y-axis:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

40-

.
30 [ o0
- o 0 °

> e o 0 o oo [ J

= 03 03 e o o

= o o oo o 0o 0 o

o o 0 00 o oo oo o o . °
. o o oo o o . .
o0 00 o o [ L)
o o [} . .
e o o L3 (3
. .
20 - 3 () (X}
e o o oo .
e o 0o 0 ° oo
() oo o o0 o 0 0 o o .
o0 o
L) (1] 00 o o
. .
.
2 3 4 5 6 7

displ

The plot shows a negative relationship between engine size (displ)
and fuel efficiency (hwy). In other words, cars with big engines use
more fuel. Does this confirm or refute your hypothesis about fuel
efficiency and engine size?

FirstSteps | 5



With ggplot2, you begin a plot with the function ggplot().
ggplot() creates a coordinate system that you can add layers to. The
first argument of ggplot() is the dataset to use in the graph. So
ggplot(data = mpg) creates an empty graph, but it's not very inter-
esting so 'm not going to show it here.

You complete your graph by adding one or more layers to ggplot().
The function geom_point() adds a layer of points to your plot,
which creates a scatterplot. ggplot2 comes with many geom func-
tions that each add a different type of layer to a plot. You’'ll learn a
whole bunch of them throughout this chapter.

Each geom function in ggplot2 takes a mapping argument. This
defines how variables in your dataset are mapped to visual proper-
ties. The mapping argument is always paired with aes(), and the x
and y arguments of aes() specify which variables to map to the x-
and y-axes. ggplot2 looks for the mapped variable in the data argu-
ment, in this case, mpg.

A Graphing Template

Let’s turn this code into a reusable template for making graphs with
ggplot2. To make a graph, replace the bracketed sections in the fol-
lowing code with a dataset, a geom function, or a collection of map-

pings:

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

The rest of this chapter will show you how to complete and extend
this template to make different types of graphs. We will begin with
the <MAPPINGS> component.

Exercises

1. Run ggplot(data = mpg). What do you see?
2. How many rows are in mtcars? How many columns?

3. What does the drv variable describe? Read the help for ?mpg to
find out.

4. Make a scatterplot of hwy versus cyl.

6 | Chapter 1: Data Visualization with ggplot2



5. What happens if you make a scatterplot of class versus drv?
Why is the plot not useful?

Aesthetic Mappings

The greatest value of a picture is when it forces us to notice what we
never expected to see.

—John Tukey

In the following plot, one group of points (highlighted in red) seems
to fall outside of the linear trend. These cars have a higher mileage
than you might expect. How can you explain these cars?

40-

o
30 ° o0
- ° o °
> o o 0 o oo °
= ° ° e o o
kS ® o oo e 0o 0 o
® 0 0 00 o o0 e o o () °
o o o oo o o [ J (]
oo o0 o o ° °
o o o 0o 0 [ [
e o o ° °
° °
20- . ° o0
e o o (1) .
e o 0o oo ° oo
oo oo o e o 0o 0 o o .
o0 ° o
. o0 o0 o o
. .
°
' ' ' ' ' '
2 3 4 5 6 7
displ

Let’s hypothesize that the cars are hybrids. One way to test this
hypothesis is to look at the class value for each car. The class vari-
able of the mpg dataset classifies cars into groups such as compact,
midsize, and SUV. If the outlying points are hybrids, they should be
classified as compact cars or, perhaps, subcompact cars (keep in
mind that this data was collected before hybrid trucks and SUVs
became popular).

You can add a third variable, like class, to a two-dimensional scat-
terplot by mapping it to an aesthetic. An aesthetic is a visual prop-
erty of the objects in your plot. Aesthetics include things like the
size, the shape, or the color of your points. You can display a point
(like the one shown next) in different ways by changing the values of
its aesthetic properties. Since we already use the word “value” to

Aesthetic Mappings | 7



describe data, let’s use the word “level” to describe aesthetic proper-
ties. Here we change the levels of a point’s size, shape, and color to
make the point small, triangular, or blue:

You can convey information about your data by mapping the aes-
thetics in your plot to the variables in your dataset. For example, you
can map the colors of your points to the class variable to reveal the
class of each car:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))

40-

class
2seater
° compact
o . .
S, 30- TR T ® midsize
= ° oo o .
c o o ® minivan
o [ ] [ ] o0 o
° euleR ¢ ® pickup
o 00
O O 2 subcompact
20~ o o
° suv
L ] L ]
[ ] [ ] o [ ] [ ]
[ 1] [ ]
(11] [ ]
' ' .
2 3 4 5 6 7

displ

(If you prefer British English, like Hadley, you can use colour
instead of color.)

To map an aesthetic to a variable, associate the name of the aesthetic
to the name of the variable inside aes(). ggplot2 will automatically
assign a unique level of the aesthetic (here a unique color) to each
unique value of the variable, a process known as scaling. ggplot2 will

8 | Chapter 1: Data Visualization with ggplot2



also add a legend that explains which levels correspond to which
values.

The colors reveal that many of the unusual points are two-seater
cars. These cars don’t seem like hybrids, and are, in fact, sports cars!
Sports cars have large engines like SUVs and pickup trucks, but
small bodies like midsize and compact cars, which improves their
gas mileage. In hindsight, these cars were unlikely to be hybrids
since they have large engines.

In the preceding example, we mapped class to the color aesthetic,

but we could have mapped class to the size aesthetic in the same

way. In this case, the exact size of each point would reveal its class

affiliation. We get a warning here, because mapping an unordered

variable (class) to an ordered aesthetic (size) is not a good idea:
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy, size = class))
#> Warning: Using size for a discrete variable is not advised.

40- o
class
® 2seater
@ compact
o 30- @ midsize
E ' . minivan
() ° . pickup
. ® . subcompact
201 ‘ . suv
' 1 ' . l 1 1
2 3 4 5 6 7
displ

Or we could have mapped class to the alpha aesthetic, which con-
trols the transparency of the points, or the shape of the points:

# Top
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, alpha = class))

# Bottom
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy, shape = class))

Aesthetic Mappings | 9



40- class
2seater
compact

® midsize

® minivan

L]
000 0000

® pickup

°

20- ® subcompact

o
o o L] ® suv
L]

displ

40- class

A ® 2seater
by
% * 1 A compact
an ..
* Fy E% . = midsize
A = ARARE minivan
A L
+ pickup
20-

B E kK
L
Fokk
L]

* ®B +

subcompact

B R ¥
-]

suv

displ

What happened to the SUVs? ggplot2 will only use six shapes at a
time. By default, additional groups will go unplotted when you use
this aesthetic.

For each aesthetic you use, the aes() to associate the name of the
aesthetic with a variable to display. The aes() function gathers
together each of the aesthetic mappings used by a layer and passes
them to the layer’s mapping argument. The syntax highlights a use-
ful insight about x and y: the x and y locations of a point are them-
selves aesthetics, visual properties that you can map to variables to
display information about the data.

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a
reasonable scale to use with the aesthetic, and it constructs a legend
that explains the mapping between levels and values. For x and y
aesthetics, ggplot2 does not create a legend, but it creates an axis

10 | Chapter 1: Data Visualization with ggplot2



line with tick marks and a label. The axis line acts as a legend; it
explains the mapping between locations and values.

You can also set the aesthetic properties of your geom manually. For
example, we can make all of the points in our plot blue:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), color = "blue")

40-

[
20 ° o0
- o o [
> e o 0 o oo °
= ° ° e o o
= o o oo e o 0o o
o o 0 00 o oo oo o o ° °
L] e o oo e o L] L]
o0 00 0o o ° .
e o o o o (3 L]
e o o ° °
L] L]
20- . ° o0
e o o (1] ]
e o o o o oo
o0 oo o o0 o 0 0 o o °
(34 o o
. oo eee o o
L] L]
L)
' . ' ' ' '
2 3 4 5 6 7
displ

Here, the color doesn't convey information about a variable, but
only changes the appearance of the plot. To set an aesthetic man-
ually, set the aesthetic by name as an argument of your geom func-
tion; i.e., it goes outside of aes(). You'll need to pick a value that
makes sense for that aesthetic:

o The name of a color as a character string.
o The size of a point in mm.

o The shape of a point as a number, as shown in Figure 1-1. There
are some seeming duplicates: for example, 0, 15, and 22 are all
squares. The difference comes from the interaction of the color
and fill aesthetics. The hollow shapes (0-14) have a border
determined by color; the solid shapes (15-18) are filled with
color; and the filled shapes (21-24) have a border of color and
are filled with fill.

AestheticMappings | 11



o X4 @10 W15 W22
O1 V6 XX11 @ 16 @ 2
A2 K7 HFH12 A7 A2s
Os Ks X133 & 18 @23
+3 $o W14 @19 @ 20

Figure 1-1. R has 25 built-in shapes that are identified by numbers

Exercises

1. What’s gone wrong with this code? Why are the points not blue?

ggplot(data = mpg) +
geom_point(
mapping = aes(x = displ, y = hwy, color = "blue")
)

40-

30- colour

hwy

blue

20-

2 3 4 5 6 7
displ

2. Which variables in mpg are categorical? Which variables are
continuous? (Hint: type ?mpg to read the documentation for the
dataset.) How can you see this information when you run mpg?

3. Map a continuous variable to color, size, and shape. How do
these aesthetics behave differently for categorical versus contin-
uous variables?

4. What happens if you map the same variable to multiple aesthet-
ics?

5. What does the stroke aesthetic do? What shapes does it work
with? (Hint: use ?geom_point.)

12 | Chapter 1: Data Visualization with ggplot2



6. What happens if you map an aesthetic to something other than
a variable name, like aes(color = displ < 5)?

Common Problems

As you start to run R code, you're likely to run into problems. Don’t
worry—it happens to everyone. I have been writing R code for
years, and every day I still write code that doesn’t work!

Start by carefully comparing the code that youre running to the
code in the book. R is extremely picky, and a misplaced character
can make all the difference. Make sure that every ( is matched with
a ) and every " is paired with another ". Sometimes you’ll run the
code and nothing happens. Check the left-hand side of your con-
sole: if it’s a +, it means that R doesn’t think you’ve typed a complete
expression and it’s waiting for you to finish it. In this case, it’s usu-
ally easy to start from scratch again by pressing Esc to abort process-
ing the current command.

One common problem when creating ggplot2 graphics is to put the
+ in the wrong place: it has to come at the end of the line, not the
start. In other words, make sure you havent accidentally written
code like this:

ggplot(data = mpg)

+ geom_point(mapping = aes(x = displ, y = hwy))
If you're still stuck, try the help. You can get help about any R func-
tion by running ?function_name in the console, or selecting the
function name and pressing F1 in RStudio. Don’t worry if the help
doesn’'t seem that helpful—instead skip down to the examples and
look for code that matches what you're trying to do.

If that doesn’t help, carefully read the error message. Sometimes the
answer will be buried there! But when youre new to R, the answer
might be in the error message but you don’t yet know how to under-
stand it. Another great tool is Google: trying googling the error mes-
sage, as it’s likely someone else has had the same problem, and has
received help online.

Common Problems | 13



Facets

One way to add additional variables is with aesthetics. Another way,
particularly useful for categorical variables, is to split your plot into
facets, subplots that each display one subset of the data.

2seater compact midsize minivan
L[]
40-

1 ot , =£.|¢' {’*. . A4

20~

pickup subcompact suv

hwy

40-

30-

.r..‘o oo

[
20~ © og2 o
bt 1 13
L] [ ]
2 34567 23 456 7 234567
displ

To facet your plot by a single variable, use facet_wrap(). The first
argument of facet_wrap() should be a formula, which you create
with ~ followed by a variable name (here “formula” is the name of a
data structure in R, not a synonym for “equation”). The variable that
you pass to facet_wrap() should be discrete:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)
To facet your plot on the combination of two variables, add
facet_grid() to your plot call. The first argument of facet_grid()
is also a formula. This time the formula should contain two variable

names separated by a ~:
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ cyl)

14 | Chapter 1: Data Visualization with ggplot2



displ

If you prefer to not facet in the rows or columns dimension, use a .
instead of a variable name, e.g., + facet_grid(. ~ cyl).

Exercises

1. What happens if you facet on a continuous variable?

2. What do the empty cells in a plot with facet_grid(drv ~ cyl)
mean? How do they relate to this plot?

ggplot(data = mpg) +
geom_point(mapping = aes(x = drv, y = cyl))

3. What plots does the following code make? What does . do?

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)

ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)
4. Take the first faceted plot in this section:
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +

facet_wrap(~ class, nrow = 2)

What are the advantages to using faceting instead of the color
aesthetic? What are the disadvantages? How might the balance
change if you had a larger dataset?

Facets | 15



5. Read ?facet_wrap. What does nrow do? What does ncol do?
What other options control the layout of the individual panels?
Why doesn’t facet_grid() have nrow and ncol variables?

6. When using facet_grid() you should usually put the variable
with more unique levels in the columns. Why?

Geometric Objects

How are these two plots similar?

hwy
wy

4
displ

Both plots contain the same x variable and the same y variable, and
both describe the same data. But the plots are not identical. Each
plot uses a different visual object to represent the data. In ggplot2
syntax, we say that they use different geoms.

A geom is the geometrical object that a plot uses to represent data.
People often describe plots by the type of geom that the plot uses.
For example, bar charts use bar geoms, line charts use line geoms,
boxplots use boxplot geoms, and so on. Scatterplots break the trend;
they use the point geom. As we see in the preceding plots, you can
use different geoms to plot the same data. The plot on the left uses
the point geom, and the plot on the right uses the smooth geom, a
smooth line fitted to the data.

To change the geom in your plot, change the geom function that you
add to ggplot(). For instance, to make the preceding plots, you can
use this code:

# left
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

# right
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy))

16 | Chapter 1: Data Visualization with ggplot2



Every geom function in ggplot2 takes a mapping argument. How-
ever, not every aesthetic works with every geom. You could set the
shape of a point, but you couldn't set the “shape” of a line. On the
other hand, you could set the linetype of a line. geom_smooth() will
draw a different line, with a different linetype, for each unique value
of the variable that you map to linetype:

ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv))

35-

30-

-

Here geom_smooth() separates the cars into three lines based on
their drv value, which describes a car’s drivetrain. One line describes
all of the points with a 4 value, one line describes all of the points
with an f value, and one line describes all of the points with an r
value. Here, 4 stands for four-wheel drive, f for front-wheel drive,
and r for rear-wheel drive.

If this sounds strange, we can make it more clear by overlaying the
lines on top of the raw data and then coloring everything according
todrv.

40-

30-

hwy

20-

Geometric Objects | 17



Notice that this plot contains two geoms in the same graph! If this
makes you excited, buckle up. In the next section, we will learn how
to place multiple geoms in the same plot.

ggplot2 provides over 30 geoms, and extension packages provide
even more (see https://www.ggplot2-exts.org for a sampling). The
best way to get a comprehensive overview is the ggplot2 cheatsheet,
which you can find at http://rstudio.com/cheatsheets. To learn more
about any single geom, use help: ?geom_smooth.

Many geoms, like geom_smooth(), use a single geometric object to
display multiple rows of data. For these geoms, you can set the
group aesthetic to a categorical variable to draw multiple objects.
ggplot2 will draw a separate object for each unique value of the
grouping variable. In practice, ggplot2 will automatically group the
data for these geoms whenever you map an aesthetic to a discrete
variable (as in the linetype example). It is convenient to rely on this
feature because the group aesthetic by itself does not add a legend or
distinguishing features to the geoms:

ggplot(data = mpg) +
geom_smooth(mapping = aes(x

displ, y = hwy))
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, group = drv))

ggplot(data = mpg) +
geom_smooth(
mapping = aes(x = displ, y = hwy, color = drv),
show.legend = FALSE
)

To display multiple geoms in the same plot, add multiple geom
functions to ggplot():
ggplot(data = mpg) +

geom_point(mapping = aes(x = displ, y = hwy)) +
geom_smooth(mapping = aes(x = displ, y = hwy))

18 | Chapter 1: Data Visualization with ggplot2


https://www.ggplot2-exts.org
http://rstudio.com/cheatsheets

40-

30-

hwy

20~

This, however, introduces some duplication in our code. Imagine if
you wanted to change the y-axis to display cty instead of hwy. Youd
need to change the variable in two places, and you might forget to
update one. You can avoid this type of repetition by passing a set of
mappings to ggplot(). ggplot2 will treat these mappings as global
mappings that apply to each geom in the graph. In other words, this
code will produce the same plot as the previous code:

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()

If you place mappings in a geom function, ggplot2 will treat them as
local mappings for the layer. It will use these mappings to extend or
overwrite the global mappings for that layer only. This makes it pos-
sible to display different aesthetics in different layers:

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point(mapping = aes(color = class)) +
geom_smooth()

40-
class
2seater
»  compact
30-

midsize

hwy
.

minivan

pickup
subcompact

20-
suv

Geometric Objects | 19



You can use the same idea to specify different data for each layer.
Here, our smooth line displays just a subset of the mpg dataset, the
subcompact cars. The local data argument in geom_smooth() over-
rides the global data argument in ggplot() for that layer only:

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point(mapping = aes(color = class)) +
geom_smooth(

data = filter(mpg, class == "subcompact"),
se = FALSE
)

40-

class
2seater
compact

30-

midsize

hwy
[ ]

minivan

pickup
subcompact

20~
suv

displ

(You'll learn how filter() works in the next chapter: for now, just
know that this command selects only the subcompact cars.)

Exercises

1. What geom would you use to draw a line chart? A boxplot? A
histogram? An area chart?

2. Run this code in your head and predict what the output will
look like. Then, run the code in R and check your predictions:

ggplot(

data = mpg,

mapping = aes(x = displ, y = hwy, color = drv)
)+

geom_point() +
geom_smooth(se = FALSE)

3. What does show.legend = FALSE do? What happens if you
remove it? Why do you think I used it earlier in the chapter?

4. What does the se argument to geom_smooth() do?

20 | Chapter 1:Data Visualization with ggplot2



5. Will these two graphs look different? Why/why not?

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()

ggplot() +
geom_point(
data = mpg,
mapping = aes(x = displ, y
)+
geom_smooth(
data = mpg,
mapping = aes(x = displ, y

hwy)

hwy)
)

6. Re-create the R code necessary to generate the following graphs.

drv

" drv
-4 e 4
- EGO- ° .
f ﬂm' o.. ° f

- 20- . :'!'i“!:' o r

Geometric Objects | 21



Statistical Transformations

Next, let’s take a look at a bar chart. Bar charts seem simple, but they
are interesting because they reveal something subtle about plots.
Consider a basic bar chart, as drawn with geom_bar (). The follow-
ing chart displays the total number of diamonds in the diamonds
dataset, grouped by cut. The diamonds dataset comes in ggplot2
and contains information about ~54,000 diamonds, including the
price, carat, color, clarity, and cut of each diamond. The chart
shows that more diamonds are available with high-quality cuts than
with low quality cuts:

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))
10000 -

- - I I I
.. I

Féir G(;Od Very lGood Prer;lium Idleal
cut

20000 -

15000 -

count

On the x-axis, the chart displays cut, a ‘variable from diamonds. On
the y-axis, it displays count, but count is not a variable in diamonds!
Where does count come from? Many graphs, like scatterplots, plot
the raw values of your dataset. Other graphs, like bar charts, calcu-
late new values to plot:

o Bar charts, histograms, and frequency polygons bin your data
and then plot bin counts, the number of points that fall in each
bin.

» Smoothers fit a model to your data and then plot predictions
from the model.

22 | Chapter 1: Data Visualization with ggplot2



+ Boxplots compute a robust summary of the distribution and
display a specially formatted box.

The algorithm used to calculate new values for a graph is called a
stat, short for statistical transformation. The following figure
describes how this process works with geom_bar ().

1. geom_bar () begins with 2. geom_bar () transforms 3.geom_bar () uses the transformed data to build the
the diamonds data set the data with the "count” plot. cut is mapped to the x axis, count is mapped
stat, which returns a data to the y axis.
set of cut values and
counts.

0]
ors oo oy 2y | ] m
el

ass a0 240 Far 1610 -
021 Premium E SII 61 326 389 384 231 m Good. 4906 1 g!DOW
0m God E VSt 569 G a2 405 407 231 Vory Good 2002 8
0 Pemum | Vez 624 S x4 420 420 280 [
031 Good U Sp 623 S ms 4% 435 275 oal 2158t 1
-.

Far  Good Very Gmd Premium  Ideal

You can learn which stat a geom uses by inspecting the default value
for the stat argument. For example, ?geom_bar shows the default
value for stat is “count,;” which means that geom_bar() uses
stat_count(). stat_count() is documented on the same page as
geom_bar (), and if you scroll down you can find a section called
“Computed variables” That tells that it computes two new variables:
count and prop.

You can generally use geoms and stats interchangeably. For example,
you can re-create the previous plot using stat_count() instead of
geom_bar():

ggplot(data = diamonds) +
stat_count(mapping = aes(x = cut))

20000 -

15000 -

10000 -
- -

Fa\r Good Very Good Premlum Idea\
cut

count

Statistical Transformations | 23



This works because every geom has a default stat, and every stat has
a default geom. This means that you can typically use geoms
without worrying about the underlying statistical transformation.
There are three reasons you might need to use a stat explicitly:

» You might want to override the default stat. In the following
code, I change the stat of geom_bar() from count (the default)
to identity. This lets me map the height of the bars to the raw
values of a y variable. Unfortunately when people talk about bar
charts casually, they might be referring to this type of bar chart,
where the height of the bar is already present in the data, or the
previous bar chart where the height of the bar is generated by
counting rows.

demo <- tribble(
~a, ~b,
"bar_1", 20,
"bar_2", 30,
"bar_3", 40

)

ggplot(data = demo) +

geom_bar(
mapping = aes(x = a, y = b), stat = "identity"
)

40-

30-

o 20-
) .
0-

bar_1 bar_2 bar_3
a

(Don’t worry that you haven't seen <- or tibble() before. You
might be able to guess at their meaning from the context, and
you'll learn exactly what they do soon!)

24 | Chapter 1: Data Visualization with ggplot2

vww allitebooks.conl



http://www.allitebooks.org

« You might want to override the default mapping from trans-
formed variables to aesthetics. For example, you might want to
display a bar chart of proportion, rather than count:

ggplot(data = diamonds) +

geom_bar(
mapping = aes(x = cut, y = ..prop.., group = 1)

0.4-

0.3-
o
o o02-
o

0.1-

. I -

Féir Go'od Very lGood Prer;ﬂum Idéal

cut

To find the variables computed by the stat, look for the help sec-
tion titled “Computed variables.”

+ You might want to draw greater attention to the statistical trans-
formation in your code. For example, you might use stat_sum
mary(), which summarizes the y values for each unique x value,
to draw attention to the summary that youre computing:

ggplot(data = diamonds) +
stat_summary(
mapping = aes(x = cut, y = depth),
fun.ymin = min,
fun.ymax = max,
fun.y = median

)

Statistical Transformations | 25



80-

70-

depth
3
—._
—e

50-

Fair Good Very Good Premium Ideal
cut

ggplot2 provides over 20 stats for you to use. Each stat is a function,
so you can get help in the usual way, e.g., ?stat_bin. To see a com-
plete list of stats, try the ggplot2 cheatsheet.

Exercises

1. What is the default geom associated with stat_summary()?
How could you rewrite the previous plot to use that geom func-
tion instead of the stat function?

2. What does geom_col() do? How is it different to geom_bar()?

3. Most geoms and stats come in pairs that are almost always used
in concert. Read through the documentation and make a list of
all the pairs. What do they have in common?

4. What variables does stat_smooth() compute? What parame-
ters control its behavior?

5. In our proportion bar chart, we need to set group = 1. Why? In
other words what is the problem with these two graphs?

ggplot(data = diamonds) +

geom_bar(mapping = aes(x = cut, y = ..prop..))
ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = color, y = ..prop..)
)

26 | Chapter 1:Data Visualization with ggplot2



Position Adjustments

There’s one more piece of magic associated with bar charts. You can

color a bar chart using either the color aesthetic, or more usefully,
fill:

ggplot(data = diamonds) +
geom_bar(mapping = aes(x
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = cut))

cut, color = cut))

20000 20000~
15000 out 15000 out
| B W Fair
e Mo ¢ Moo
8 10000- Ml vervGoos 8 10000 [ very Good
W Frerim Il Fromiom
W W ea
5000+ 5000~

od VryGood Premium VeryGood  Premium

Note what happens if you map the fill aesthetic to another vari-
able, like clarity: the bars are automatically stacked. Each colored
rectangle represents a combination of cut and clarity:

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = clarity))

20000 -

clarity

15000 -

10000~
- -

Fair Good Very Good Premium Ideal
cut

count

The stacking is performed automatically by the position adjustment
specified by the position argument. If you don’t want a stacked bar

Position Adjustments | 27



chart, you can use one of three other options: "identity", "dodge"
or "fill":

« position = "identity" will place each object exactly where it
falls in the context of the graph. This is not very useful for bars,
because it overlaps them. To see that overlapping we either need
to make the bars slightly transparent by setting alpha to a small
value, or completely transparent by setting fill = NA:

ggplot(
data = diamonds,

mapping = aes(x = cut, fill = clarity)
)+

geom_bar(alpha = 1/5, position = "identity")
ggplot(

data = diamonds,

mapping = aes(x = cut, color = clarity)
)+

geom_bar(fill = NA, position = "identity")

The identity position adjustment is more useful for 2D geoms,
like points, where it is the default.

o position = "fill" works like stacking, but makes each set of
stacked bars the same height. This makes it easier to compare
proportions across groups:

ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = clarity),
position = "fill"

)

1.00-

clarity
i
se
s
B vs2
B vs
B vvs2
[ wvst
o

0.25-

0.00-

Fair Good VeryGood  Premium deal
cut

28 | Chapter 1: Data Visualization with ggplot2



» position = "dodge" places overlapping objects directly beside
one another. This makes it easier to compare individual values:

ggplot(data
geom_bar(

5000 -

4000 -

bth

0-

3000

count

2000

1000

diamonds) +

cut, fill = clarity),
position = "dodge"

)

clarity
i
[ se
[ ER
B vs2
B vs1
B vvs2
[ wwst
e

There’s one other type of adjustment that’s not useful for bar charts,
but it can be very useful for scatterplots. Recall our first scatterplot.
Did you notice that the plot displays only 126 points, even though

there are 234 observations in the dataset?

40~

30-

hwy

20~

Position Adjustments | 29



The values of hwy and displ are rounded so the points appear on a
grid and many points overlap each other. This problem is known as
overplotting. This arrangement makes it hard to see where the mass
of the data is. Are the data points spread equally throughout the
graph, or is there one special combination of hwy and displ that
contains 109 values?

You can avoid this gridding by setting the position adjustment to
“jitter” position = "jitter" adds a small amount of random noise
to each point. This spreads the points out because no two points are
likely to receive the same amount of random noise:

ggplot(data = mpg) +
geom_point(
mapping = aes(x = displ, y = hwy),

position = "jitter"
)
o
.
40-
]
k4
° o
L J 5 7’
>30_ o‘.’oﬁ ..0
g > ° e O
< “%g’q...f' e ® °
P o ® ® o ° °
® e o oo .
e o S DX ?
] * > ..%'0’ 90.5
"™ f1) o, e o °
. J ‘.’g.'..o
8
2 3 ;1 é 6 7
displ

Adding randomness seems like a strange way to improve your plot,
but while it makes your graph less accurate at small scales, it makes
your graph more revealing at large scales. Because this is such a use-
ful operation, ggplot2 comes with a shorthand for geom_point(post
tion = "jitter"): geom_jitter().

To learn more about a position adjustment, look up the help page
associated with each adjustment: ?position_dodge, ?posi
tion_fill, ?position_identity, ?position_jitter, and ?posi
tion_stack.

30 | Chapter 1:Data Visualization with ggplot2



Exercises

1. What is the problem with this plot? How could you improve it?

ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_point()

40-

® o0 o
.

30-

hwy
oo
o oo

20-

cty

2. What parameters to geom_jitter() control the amount of jit-
tering?

3. Compare and contrast geom_jitter() with geom_count().

4. Whats the default position adjustment for geom_boxplot()?
Create a visualization of the mpg dataset that demonstrates it.

Coordinate Systems

Coordinate systems are probably the most complicated part of
ggplot2. The default coordinate system is the Cartesian coordinate
system where the x and y position act independently to find the
location of each point. There are a number of other coordinate sys-
tems that are occasionally helpful:

o coord_flip() switches the x- and y-axes. This is useful (for
example) if you want horizontal boxplots. It’s also useful for
long labels—it’s hard to get them to fit without overlapping on

the x-axis:
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
geom_boxplot()
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +

geom_boxplot() +
coord_flip()

Coordinate Systems | 31



T ¥ suv - ® —{[]—eseee

- L]
40 ° subcompact - —IF— e
L]
ickup-o I} o
z 30- g Powe
E © minivan = e I
== o ' © midsize - —I—
201 . == #: compact - —[1— ee .
B b 2seater - 1
Zse.aleomlpamidlswzmmivamcl.smmolmpasl‘w 20 30 40
class hwy

o coord_quickmap() sets the aspect ratio correctly for maps. This
is very important if youre plotting spatial data with ggplot2
(which unfortunately we don't have the space to cover in this

book):

nz <- map_data("nz"

ggplot(nz, aes(long, lat, group = group)) +
geom_polygon(fill = "white", color = "black")

ggplot(nz, aes(long, lat, group = group)) +
geom_polygon(fill = "white", color = "black") +
coord_quickmap()

-36- . -36-
40- 40-
* j “

48- =, ) a8- >, )
170 175 170 175

long long

lat

lat

« coord_polar() uses polar coordinates. Polar coordinates reveal
an interesting connection between a bar chart and a Coxcomb
chart:

bar <- ggplot(data = diamonds) +

geom_bar(
mapping = aes(x = cut, fill = cut),
show.legend = FALSE,
width = 1

) +

theme(aspect.ratio = 1) +

labs(x = NULL, y = NULL)

bar + coord_flip()
bar + coord_polar()

32 | Chapter 1: Data Visualization with ggplot2



20000~ Ideal Fair
15000 -
10000 -

5000 -

Ideal -
Premium -
Very Good -
remium Good

Good -

Fair-

0 5000 10000 15000 20000 elised

Exercises

1. Turn a stacked bar chart into a pie chart using coord_polar().
2. What does labs() do? Read the documentation.

3. What’s the difference between coord_guickmap() and
coord_map()?

4. What does the following plot tell you about the relationship
between city and highway mpg? Why is coord_fixed() impor-
tant? What does geom_abline() do?

ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_point() +
geom_abline() +
coord_fixed()

Coordinate Systems | 33



The Layered Grammar of Graphics

In the previous sections, you learned much more than how to make
scatterplots, bar charts, and boxplots. You learned a foundation that
you can use to make any type of plot with ggplot2. To see this, let’s
add position adjustments, stats, coordinate systems, and faceting to
our code template:

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(
mapping = aes(<MAPPINGS>),
stat = <STAT>,
position = <POSITION>
) +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION>

Our new template takes seven parameters, the bracketed words that
appear in the template. In practice, you rarely need to supply all
seven parameters to make a graph because ggplot2 will provide use-
ful defaults for everything except the data, the mappings, and the
geom function.

The seven parameters in the template compose the grammar of
graphics, a formal system for building plots. The grammar of graph-
ics is based on the insight that you can uniquely describe any plot as
a combination of a dataset, a geom, a set of mappings, a stat, a posi-
tion adjustment, a coordinate system, and a faceting scheme.

To see how this works, consider how you could build a basic plot
from scratch: you could start with a dataset and then transform it
into the information that you want to display (with a stat):

1. Begin with the diamonds 2. Compute counts for each cut
data set value with stat_count().
carat | _cut | color clarity | deptn table price | x | y __z | | cut__ count | prop]
0.23 Ideal E Sl2 615 55 326 395 398 243 Fair 1610 1
0.21 Premium E s 598 61 326 3.89 384 231 Good 4906 1
0.23  Good E VSsi1 569 65 327 4.05 4.07 231 Very Good 12082 1
0.29 Premium | VS2 624 58 334 420 423 263 Premium 13791 1
0.31 Good J Sl2 633 58 335 434 435 275 Ideal 21551 1

34 | Chapter 1:Data Visualization with ggplot2



Next, you could choose a geometric object to represent each obser-
vation in the transformed data. You could then use the aesthetic
properties of the geoms to represent variables in the data. You would
map the values of each variable to the levels of an aesthetic:

3. Represent each observation
with a bar.

4. Map the fill of each bar to
the . .count.. variable.

corat | _cut | color | laity | deptntable price | x |y | = | mm/n-h
0.23 Ideal Ej Sl2 615 55 326 395 398 243 Fair 1610 1 —>-
0.21 Premium E S 598 61 326 389 384 231 stat_count() Good 4906 1 —p
0.23  Good E VS1 569 65 327 4.05 4.07 231 Very Good 12082 1 —p
0.29 Premium | V82 624 58 334 420 423 263 Premium 13791 1  —p [l
0.31  Good J Sl2 633 58 335 434 435 275 Ideal 21551 1 —».

Youd then select a coordinate system to place the geoms into. Youd
use the location of the objects (which is itself an aesthetic property)
to display the values of the x and y variables. At that point, you
would have a complete graph, but you could further adjust the posi-
tions of the geoms within the coordinate system (a position adjust-
ment) or split the graph into subplots (faceting). You could also
extend the plot by adding one or more additional layers, where each
additional layer uses a dataset, a geom, a set of mappings, a stat, and
a position adjustment:

5. Place geoms in a cartesian 6. Map the y values to . . count. .
coordinate system. and the x values to cut.
20000-
h

orat|_cut_|color ctary |t e price| x | v | 2 | e comi_prop
023 ldeal E SI2 615 55 326 395 398 243 Far 1610 1 — I €
021 Promum E SN 508 61 326 389 384 231 m Good 4906 1 —p s
02 Good E VS 509 65 327 405 407 231 VoryGood 12082 1 —» 8 10000~
029 Promum | Vs2 624 58 34 420 423 263 Promium 19791 1 —»
031 Good J S2 633 58 335 434 435 275 ldoal 21851 1 —s

5000

.|

Good  VeryGood Premium  Ideal
cut

You could use this method to build any plot that you imagine. In
other words, you can use the code template that you've learned in
this chapter to build hundreds of thousands of unique plots.

The Layered Grammar of Graphics | 35






CHAPTER 2
Workflow: Basics

You now have some experience running R code. I didn't give you
many details, but you've obviously figured out the basics, or you
would’ve thrown this book away in frustration! Frustration is natu-
ral when you start programming in R, because it is such a stickler
for punctuation, and even one character out of place will cause it to
complain. But while you should expect to be a little frustrated, take
comfort in that it’s both typical and temporary: it happens to every-
one, and the only way to get over it is to keep trying.

Before we go any further, let’s make sure you've got a solid founda-
tion in running R code, and that you know about some of the most
helpful RStudio features.

Coding Basics

Let’s review some basics we've so far omitted in the interests of get-
ting you plotting as quickly as possible. You can use R as a calcula-
tor:

1/ 200 * 30

#> [1] 0.15

(59 + 73 +2) / 3
#> [1] 44.7
sin(pi / 2)

# [1] 1

You can create new objects with <-:

X <- 3 * 4

37



All R statements where you create objects, assignment statements,
have the same form:

object_name <- value

When reading that code say “object name gets value” in your head.

You will make lots of assignments and <- is a pain to type. Don't be
lazy and use =: it will work, but it will cause confusion later. Instead,
use RStudio’s keyboard shortcut: Alt-- (the minus sign). Notice that
RStudio automagically surrounds <- with spaces, which is a good
code formatting practice. Code is miserable to read on a good day,
so giveyoureyesabreak and use spaces.

What's in a Name?

Object names must start with a letter, and can only contain letters,
numbers, _, and .. You want your object names to be descriptive, so
youll need a convention for multiple words. I recommend
snake_case where you separate lowercase words with _:

i1_use_snake_case
otherPeopleUseCamelCase
some.people.use.periods
And_aFew.People_RENOUNCEconvention

We'll come back to code style later, in Chapter 15.
You can inspect an object by typing its name:

X
# [1] 12

Make another assignment:
this_1is_a_really_long_name <- 2.5

To inspect this object, try out RStudios completion facility: type
“this,” press Tab, add characters until you have a unique prefix, then
press Return.

Oops, you made a mistake! this_is_a_really_long_name should
have value 3.5 not 2.5. Use another keyboard shortcut to help you fix
it. Type “this” then press Cmd/Ctrl-1. That will list all the com-
mands you've typed that start with those letters. Use the arrow keys
to navigate, then press Enter to retype the command. Change 2.5 to
3.5 and rerun.

38 | Chapter2: Workflow: Basics



Make yet another assignment:
r_rocks <- 2 ~ 3
Let’s try to inspect it:

r_rock

#> Error: object 'r_rock' not found

R_rocks

#> Error: object 'R_rocks' not found
There’s an implied contract between you and R: it will do the tedious
computation for you, but in return, you must be completely precise
in your instructions. Typos matter. Case matters.

Calling Functions

R has a large collection of built-in functions that are called like this:
function_name(argl = vall, arg2 = val2, ...)

Let’s try using seq(), which makes regular *seq*uences of numbers
and, while were at it, learn more helpful features of RStudio. Type
se and hit Tab. A pop-up shows you possible completions. Specify
seq() by typing more (a “qQ") to disambiguate, or by using 1/]
arrows to select. Notice the floating tooltip that pops up, reminding
you of the function’s arguments and purpose. If you want more help,

press F1 to get all the details in the help tab in the lower-right pane.

Press Tab once more when you've selected the function you want.
RStudio will add matching opening (() and closing ()) parentheses
for you. Type the arguments 1, 10 and hit Return:

seq(1, 10)

#> [1] 1 2 3 4 5 6 7 8 910
Type this code and notice similar assistance help with the paired
quotation marks:

x <- "hello world"

Quotation marks and parentheses must always come in a pair. RStu-
dio does its best to help you, but it’s still possible to mess up and end
up with a mismatch. If this happens, R will show you the continua-
tion character “+”:

> x <- "hello
¥

Calling Functions | 39



The + tells you that R is waiting for more input; it doesn't think
youre done yet. Usually that means you've forgotten either a " or
a ). Either add the missing pair, or press Esc to abort the expression

and try again.

If you make an assignment, you don’t get to see the value. You're
then tempted to immediately double-check the result:

y <- seq(1l, 10, length.out = 5)

y

#> [1] 1.00 3.25 5.50 7.75 10.00
This common action can be shortened by surrounding the assign-
ment with parentheses, which causes assignment and “print to
screen” to happen:

(y <- seq(1, 10, length.out = 5))
#> [1] 1.00 3.25 5.50 7.75 10.00

Now look at your environment in the upper-right pane:

Environment History Build Git

’

4 [ _#Import Dataset v ¥ List ~
"} Global Environment =
Values

r_rocks 8

this_is_a_really_l..2.5

X "hello world"

y num [1:5] 1 3.25 5.5 7.75 18

Here you can see all of the objects that you've created.

Exercises

1. Why does this code not work?

my_variable <- 10

my_variable

#> Error in eval(expr, envir, enclos):
#> object 'my_variable' not found

Look carefully! (This may seem like an exercise in pointlessness,
but training your brain to notice even the tiniest difference will
pay off when programming.)

2. Tweak each of the following R commands so that they run cor-
rectly:

40 | Chapter2: Workflow: Basics



library(tidyverse)

ggplot(dota = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

fliter(mpg, cyl = 8)
filter(diamond, carat > 3)

3. Press Alt-Shift-K. What happens? How can you get to the same
place using the menus?

Calling Functions | 41






CHAPTER 3
Data Transformation with dplyr

Introduction

Visualization is an important tool for insight generation, but it is
rare that you get the data in exactly the right form you need. Often
you’ll need to create some new variables or summaries, or maybe
you just want to rename the variables or reorder the observations in
order to make the data a little easier to work with. You’ll learn how
to do all that (and more!) in this chapter, which will teach you how
to transform your data using the dplyr package and a new dataset
on flights departing New York City in 2013.

Prerequisites

In this chapter were going to focus on how to use the dplyr package,
another core member of the tidyverse. We'll illustrate the key ideas
using data from the nycflights13 package, and use ggplot2 to help
us understand the data.

library(nycflights13)

library(tidyverse)
Take careful note of the conflicts message that’s printed when you
load the tidyverse. It tells you that dplyr overwrites some functions
in base R. If you want to use the base version of these functions after
loading dplyr, you'll need to use their full names: stats::filter()
and stats::lag().

83



nycflights13

To explore the basic data manipulation verbs of dplyr, we'll use
nycflights13::flights. This data frame contains all 336,776
flights that departed from New York City in 2013. The data comes
from the US Bureau of Transportation Statistics, and is documented
in ?2flights:

flights

#> # A tibble: 336,776 x 19
#> year month  day dep_time sched dep_time dep_delay

#>  <int> <int> <int> <int> <int> <dbl>

#> 1 2013 1 1 517 515 2

#> 2 2013 1 1 533 529 4

#> 3 2013 1 1 542 540 2

#> 4 2013 1 1 544 545 -1

#> 5 2013 1 1 554 600 -6

#> 6 2013 1 1 554 558 -4

#> # ... with 336,776 more rows, and 13 more variables:

#> # arr_time <int>, sched arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

You might notice that this data frame prints a little differently from
other data frames you might have used in the past: it only shows the
first few rows and all the columns that fit on one screen. (To see the
whole dataset, you can run View(flights), which will open the
dataset in the RStudio viewer.) It prints differently because it’s a tib-
ble. Tibbles are data frames, but slightly tweaked to work better in
the tidyverse. For now, you don't need to worry about the differ-
ences; we'll come back to tibbles in more detail in Part II.

You might also have noticed the row of three- (or four-) letter abbre-
viations under the column names. These describe the type of each
variable:

« int stands for integers.

« dbl stands for doubles, or real numbers.

o chr stands for character vectors, or strings.

o dttm stands for date-times (a date + a time).

There are three other common types of variables that aren’t used in
this dataset but you'll encounter later in the book:

44 | Chapter 3: Data Transformation with dplyr


http://bit.ly/transstats

« 1gl stands for logical, vectors that contain only TRUE or FALSE.

o fctr stands for factors, which R uses to represent categorical
variables with fixed possible values.

« date stands for dates.

dplyr Basics

In this chapter you are going to learn the five key dplyr functions
that allow you to solve the vast majority of your data-manipulation
challenges:

« Pick observations by their values (filter()).
o Reorder the rows (arrange()).
o Pick variables by their names (select()).

o Create new variables with functions of existing variables
(mutate()).

o Collapse many values down to a single summary (summa
rize()).

These can all be used in conjunction with group_by(), which
changes the scope of each function from operating on the entire
dataset to operating on it group-by-group. These six functions pro-
vide the verbs for a language of data manipulation.

All verbs work similarly:

1. The first argument is a data frame.

2. The subsequent arguments describe what to do with the data
frame, using the variable names (without quotes).

3. The result is a new data frame.

Together these properties make it easy to chain together multiple
simple steps to achieve a complex result. Let’s dive in and see how
these verbs work.

Filter Rows with filter()

filter() allows you to subset observations based on their values.
The first argument is the name of the data frame. The second and

Filter Rows with filter() | 45



subsequent arguments are the expressions that filter the data frame.
For example, we can select all flights on January 1st with:
filter(flights, month == 1, day == 1)

#> # A tibble: 842 x 19
#> year month  day dep_time sched _dep_time dep_delay

#>  <int> <int> <int> <int> <int> <dbl>

#> 1 2013 1 1 517 515 2

#> 2 2013 1 1 533 529 4

#> 3 2013 1 1 542 540 2

#> 4 2013 1 1 544 545 -1

#> 5 2013 1 1 554 600 -6

#> 6 2013 1 1 554 558 -4

#> # ... with 836 more rows, and 13 more variables:

#> # arr_time <int>, sched arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>,origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>

When you run that line of code, dplyr executes the filtering opera-
tion and returns a new data frame. dplyr functions never modify
their inputs, so if you want to save the result, you’ll need to use the
assignment operator, <-:

janl <- filter(flights, month == 1, day == 1)

R either prints out the results, or saves them to a variable. If you
want to do both, you can wrap the assignment in parentheses:
(dec25 <- filter(flights, month == 12, day == 25))

#> # A tibble: 719 x 19
#> year month  day dep_time sched _dep_time dep_delay

#>  <int> <int> <int> <int> <int> <dbl>
#> 1 2013 12 25 456 500 -4
#> 2 2013 12 25 524 515 9
#> 3 2013 12 25 542 540 2
#> 4 2013 12 25 546 550 -4
#> 5 2013 12 25 556 600 -4
#> 6 2013 12 25 557 600 -3
#> # ... with 713 more rows, and 13 more variables:
#> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>,origin <chr>,
#> # dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
#> # minute <dbl>, time_hour <dttm>
Comparisons

To use filtering effectively, you have to know how to select the obser-
vations that you want using the comparison operators. R provides
the standard suite: >, >=, <, <=, != (not equal), and == (equal).

46 | Chapter 3: Data Transformation with dplyr



When you're starting out with R, the easiest mistake to make is to
use = instead of == when testing for equality. When this happens
you’'ll get an informative error:

filter(flights, month = 1)

#> Error: filter() takes unnamed arguments. Do you need ‘=='?
There’s another common problem you might encounter when using
==: floating-point numbers. These results might surprise you!

sqrt(2) ~ 2 ==

#> [1] FALSE

1/49 * 49 ==

#> [1] FALSE
Computers use finite precision arithmetic (they obviously can’t store
an infinite number of digits!) so remember that every number you
see is an approximation. Instead of relying on ==, use near():

near(sqrt(2) ~ 2, 2)

#> [1] TRUE

near(1l / 49 * 49, 1)
#> [1] TRUE

Logical Operators

Multiple arguments to filter() are combined with “and™ every
expression must be true in order for a row to be included in the out-
put. For other types of combinations, you’ll need to use Boolean
operators yourself: & is “and,” | is “or,” and ! is “not” The following
figure shows the complete set of Boolean operations.

y & Ix
X &y

xor(x, y)

x & ly

SIS
SieiS

The following code finds all flights that departed in November or
December:

Filter Rows with filter() | 47



filter(flights, month == 11 | month == 12)

The order of operations doesn’t work like English. You can’t write
filter(flights, month == 11 | 12), which you might literally
translate into “finds all flights that departed in November or Decem-
ber” Instead it finds all months that equal 11 | 12, an expression
that evaluates to TRUE. In a numeric context (like here), TRUE
becomes one, so this finds all flights in January, not November or
December. This is quite confusing!

A useful shorthand for this problem is x %in% y. This will select
every row where x is one of the values in y. We could use it to
rewrite the preceding code:

nov_dec <- filter(flights, month %in% c(11, 12))

Sometimes you can simplify complicated subsetting by remember-
ing De Morgan’s law: !(x & y) is the same as !x | !y, and !(x |
y) is the same as !x & !y. For example, if you wanted to find flights
that weren't delayed (on arrival or departure) by more than two
hours, you could use either of the following two filters:

filter(flights, !(arr_delay > 120 | dep_delay > 120))
filter(flights, arr_delay <= 120, dep_delay <= 120)

As well as & and |, R also has && and | |. Don’t use them here! You’'ll

learn when you should use them in “Conditional Execution” on page
276.

Whenever you start using complicated, multipart expressions in fil
ter(), consider making them explicit variables instead. That makes
it much easier to check your work. You'll learn how to create new
variables shortly.

Missing Values

One important feature of R that can make comparison tricky is
missing values, or NAs (“not availables”). NA represents an unknown
value so missing values are “contagious”; almost any operation
involving an unknown value will also be unknown:

NA > 5
#> [1] NA
10 == NA
#> [1] NA
NA + 10
#> [1] NA

48 | Chapter 3: Data Transformation with dplyr



NA / 2
#> [1] NA

The most confusing result is this one:
NA == NA
#> [1] NA
It’s easiest to understand why this is true with a bit more context:

# Let x be Mary's age. We don't know how old she fis.
X <- NA

# Let y be John's age. We don't know how old he 1is.
y <- NA

# Are John and Mary the same age?
X ==y

# [1] NA

# We don't know!

If you want to determine if a value is missing, use is.na():

is.na(x)
#> [1] TRUE

filter() only includes rows where the condition is TRUE; it
excludes both FALSE and NA values. If you want to preserve missing
values, ask for them explicitly:

df < tibble(x = c(1, NA, 3))

filter(df, x > 1)
#> # A tibble: 1 x 1

#> X
#> <dbl>
#> 1 3

filter(df, is.na(x) | x > 1)
#> # A tibble: 2 x 1

#> X

#>  <dbl>

#> 1 NA

#> 2 3

Exercises

1. Find all flights that:
a. Had an arrival delay of two or more hours
b. Flew to Houston (IAH or HOU)
c. Were operated by United, American, or Delta

Filter Rows with filter() | 49



d. Departed in summer (July, August, and September)
e. Arrived more than two hours late, but didn’t leave late

f. Were delayed by at least an hour, but made up over 30
minutes in flight

g. Departed between midnight and 6 a.m. (inclusive)

2. Another useful dplyr filtering helper is between(). What does it
do? Can you use it to simplify the code needed to answer the
previous challenges?

3. How many flights have a missing dep_time? What other vari-
ables are missing? What might these rows represent?

4. Why is NA ~ 0@ not missing? Why is NA | TRUE not missing?
Why is FALSE & NA not missing? Can you figure out the general
rule? (NA * 0 is a tricky counterexample!)

Arrange Rows with arrange()

arrange() works similarly to filter() except that instead of select-
ing rows, it changes their order. It takes a data frame and a set of col-
umn names (or more complicated expressions) to order by. If you
provide more than one column name, each additional column will
be used to break ties in the values of preceding columns:

arrange(fl