KEY VERSION
Below are a set of excercises to get you practicing with R
Be sure to write your name and the date at the top of the script in a comment
Clear your working environment
Load the data possum_trimmed.csv
from D2L.
look at the structure of the possum data using str()
Set the graphing parameters so that you have a 2 row x 4 (use = par(mfrow=c(2,4))) column graphing window (8 graphs total).
Write a for
loop that runs through each column of possum except the last one (belly size), checks if that column is numeric, and if so:
This is a complicated one, but here is some psuedocode to help you out
# read in the data using read.csv()
# check the structure using str()
# set the graphing window parameters using par() and the mfrow argument
# start the for loop (run it from 1 to 9, which is ncol(possum)-1)
# using an if statement, test if the ith column is numeric
#if the column is numeric, create a plot with the ith column as the x and the last column as the y
#end the if statement
#end the for loop
#ANSWER
#Name
#Date
rm(list=ls())
possum<-read.csv("possum_trimmed.csv")
str(possum)
## 'data.frame': 104 obs. of 10 variables:
## $ sex : chr "m" "f" "f" "f" ...
## $ age : int 8 6 6 6 2 1 2 6 9 6 ...
## $ hdlngth : num 94.1 92.5 94 93.2 91.5 93.1 95.3 94.8 93.4 91.8 ...
## $ skullw : num 60.4 57.6 60 57.1 56.3 54.8 58.2 57.6 56.3 58 ...
## $ totlngth: num 89 91.5 95.5 92 85.5 90.5 89.5 91 91.5 89.5 ...
## $ taill : num 36 36.5 39 38 36 35.5 36 37 37 37.5 ...
## $ footlgth: num 74.5 72.5 75.4 76.1 71 73.2 71.5 72.7 72.4 70.9 ...
## $ earconch: num 54.5 51.2 51.9 52.2 53.2 53.6 52 53.9 52.9 53.4 ...
## $ eye : num 15.2 16 15.5 15.2 15.1 ...
## $ belly : num 36 33 34 34 33 32 34.5 34 33 32 ...
par(mfrow=c(2,4))
for (i in 1:9){
if(is.numeric(possum[,i])){
plot(y=possum[,10], x=possum[,i], xlab=colnames(possum)[i],ylab="Belly Size")
abline(lm(possum[,10]~possum[,i]))
}
}
for
loopsUsing the built in data set USPersonalExpenditure
write for
loop that takes the mean amount spent on each category from 1940-1960. Use the result to make a barplot of the mean expenditures for each category.
hints: First create an empty vector named uspe.means
(use= uspe.means <- vector()). In the for loop, populate the vector with the means of each category, AND name each vector element using ‘names(uspe.means)’. Then use barplot()
to make the graphic.
#ANSWER:
uspe.means <- vector()
for(i in 1:5){
uspe.means[i] <- mean(USPersonalExpenditure[i,])
names(uspe.means)[i]<-row.names(USPersonalExpenditure)[i]
}
barplot(uspe.means,col="goldenrod")
Write a function which:
Takes a file name and two numbers (the defaults for the two numbers should be 1 and 2)
Reads in a table of data (assume that the file is comma delimited)
Plots the columns represented by the two numbers against each other
*Hints: Use the read.csv() function Use print() to check the values of intermediate results (to see if your function is working) Use the test file ”primates.csv" to check your program.
plot.columns <- function(filename, col1=1, col2=2) {
data <- read.csv(filename, header=T, row.names=1)
print(data)
plot(data[,col1], data[,col2])
}
plot.columns(filename="primates.csv")
## Bodywt Brainwt
## Potar monkey 10.0 115
## Gorilla 207.0 406
## Human 62.0 1320
## Rhesus monkey 6.8 179
## Chimp 52.2 440